Abstract
Abstract Hydrothermal carbonization is an attractive thermochemical method for upgrading organic waste and biomass. Hydrothermal carbonization's improvement of the upgrading and dewatering of fuel mixed with sewage sludge and low rank coal as peat was evaluated at temperatures ranging from 200 to 350 °C and at 60 min reaction time. The moisture content of mixed fuel (50:50 wt %) of sludge: peat was approximately 80.7%. Hydrothermal carbonization can improve sludge with a high moisture content as well as the mixed fuels increasing the latter's calorific value by reducing the hydrogen and oxygen contents of the solid products. Therefore, after the hydrothermal carbonization, the aromatic H/C and O/C ratios decreased due to of the chemical conversion. These results show that the hydrothermal carbonization process can be advantageous for improving the properties of mixed fuel to reusing and upgrading sludge and low rank coal. Upgraded fuel mixed with sewage sludge and peat is characteristically resistant to change in the carbon-functional groups, and their properties as determined via Fourier transform infrared (FTIR) spectroscopy, are discussed herein.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.