Abstract
This article investigated an atmospheric pressure dielectric barrier discharge (DBD) plasma reactor to explore the effects of carrier gas type, applied voltage and pulse repetition frequency on upgrading of 4-methylanisole as a lignin-derived bio-oil. A series of experiments were designed to realize the effects of argon (Ar) and hydrogen (H2) on upgrading. The results showed that argon yields higher conversion of 4-methylanisole compared to hydrogen, and both voltage and frequency had positive effects on the conversion of 4-methylanisole. Increasing voltage and frequency led to an increase in the number of active species and subsequently, the number of effective collisions as a result 4-methylanisole conversion and discharge power (DP). In the experiments with applied voltage of 9kV, frequency of 20kHz and existence of Ar as carrier gas, the conversion reached to 29.80% at the DP of 77W. The most abundant products were 4-methyphenol and 2,4-dimethylphenol, which were formed from transalkylation and hydrogenolysis reactions. It was found that the increase in the applied voltage, frequency and Ar percentage of carrier gas (as adjustable parameters), has the same effects on product distribution; since their variation resulted in the same changes in core plasma parameters such as electron energy, temperature and density.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.