Abstract

In grape skins, phenols may be classified as (1) cell-wall phenols, which are bound to polysaccharides by hydrophobic interactions and hydrogen bonds, and (2) non-cell-wall phenols, encompassing phenols confined in the vacuoles of plant cells and phenols associated with the cell nucleus. The phenolic composition of wines determines the colour quality, the sensory, and the potential health promoting properties of wines, and the extraction of phenols from the grapes into the must and wine is to a large extent governed by how the phenols are bound and entangled in the grape skins. Degradation of cell-wall polysaccharides is a fundamental step to improve the release of phenols from grape skin whether this is in winemaking or in upgrading of wine pomace. Cellulases, hemicellulases, pectinases, and other enzymes able to catalyze the hydrolysis of bonds in plant cell-wall polysaccharides can be employed to decompose the cell-wall structure. In addition, novel extraction principles and optimization of extraction conditions such as temperature, solvent-to-solid ratio, use of supercritical fluids and new extraction cell designs have shown promise for optimizing the release of phenols from grape skins for valorization of wine pomace. An in-depth knowledge of how phenols are bound in grape skins will allow us to employ the most suitable techniques to release phenols in order to optimize the phenol-related properties of wine and maximize the phenol recovery from grape byproducts.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.