Abstract

The energy level mismatch between extraction steam from turbines and heat for CO2 regeneration always results in huge exergy destruction and low thermal efficiency in post combustion power plants with CO2 capture. To solve the problem, a new CO2 capture system driven by a double absorption heat transformer is proposed in this paper. Through the absorption heat transformer, low-temperature steam can be upgraded into high level heat to match the temperature of solvent regeneration. Also, flue gas heat is recovered to preheat the circulating water to further decrease system power penalty. Aspen Plus11.0 is used to simulate the system, and the results of the key process are validated by experimental values. It is shown that with 90% CO2 capture, the thermal efficiency of the proposed system is enhanced by 1.25 percentage points. And the efficiency enhancement of proposed system has a trend of increase first and then decrease with the CO2 capture rate growth. For a 350MW coal-fired power plant, the optimum CO2 capture rate is 53.65% and the corresponding efficiency enhancement is 2.06 percentage points. Exergy analysis shows that due to better match between the upgraded steam and CO2 stripping temperature, the exergy destruction in CO2 separation process of proposed system could decrease by 40.3%, and thereby the exergy efficiency of proposed system is 33.76%, which is 1.85 percentage points higher than the conventional method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.