Abstract

The Empirical model for Solar Proton Events Real Time Alert (ESPERTA) exploits three solar parameters (flare longitude, soft X-ray fluence, and radio fluence) to provide a timely prediction for the occurrence of solar proton events (SPEs, i.e., when the >10MeV proton flux is ≥10 pfu) after the emission of a ≥M2 flare. In addition, it makes a prediction for the most dangerous SPEs for which the >10 MeV proton flux is ≥100 pfu. In this paper, we study two different ways to upgrade the ESPERTA model and implement it in real time: 1) by using ground based observations from the LOFAR stations; 2) by applying a novel machine learning algorithm to flare-based parameters to provide early warnings of SPE occurrence together with a fine-tuned radiation storm level. As a last step, we perform a preliminary study using a neural network to forecast the proton flux 1-hour ahead to complement the ESPERTA tool. We evaluate the models over flare and SPE data covering the last two solar cycles and discuss their performance, limits, and advantages.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.