Abstract

The voltage-gated potassium channel KCNQ1 (KV7.1) assembles with the KCNE1 accessory protein to generate the slow delayed rectifier current, IKS, which is critical for membrane repolarization as part of the cardiac action potential. Loss-of-function (LOF) mutations in KCNQ1 are the most common cause of congenital long QT syndrome (LQTS), type 1 LQTS, an inherited genetic predisposition to cardiac arrhythmia and sudden cardiac death. A detailed structural understanding of KCNQ1 is needed to elucidate the molecular basis for KCNQ1 LOF in disease and to enable structure-guided design of new anti-arrhythmic drugs. In this work, advanced structural models of human KCNQ1 in the resting/closed and activated/open states were developed by Rosetta homology modeling guided by newly available experimentally-based templates: X. leavis KCNQ1 and various resting voltage sensor structures. Using molecular dynamics (MD) simulations, the capacity of the models to describe experimentally established channel properties including state-dependent voltage sensor gating charge interactions and pore conformations, PIP2 binding sites, and voltage sensor–pore domain interactions were validated. Rosetta energy calculations were applied to assess the utility of each model in interpreting mutation-evoked KCNQ1 dysfunction by predicting the change in protein thermodynamic stability for 50 experimentally characterized KCNQ1 variants with mutations located in the voltage-sensing domain. Energetic destabilization was successfully predicted for folding-defective KCNQ1 LOF mutants whereas wild type-like mutants exhibited no significant energetic frustrations, which supports growing evidence that mutation-induced protein destabilization is an especially common cause of KCNQ1 dysfunction. The new KCNQ1 Rosetta models provide helpful tools in the study of the structural basis for KCNQ1 function and can be used to generate hypotheses to explain KCNQ1 dysfunction.

Highlights

  • Voltage-gated ion channels are ubiquitously expressed in human tissues and contribute to diverse physiological phenomena such as generation and modulation of the membrane potential in excitable cells, myocyte contraction, modulation of neurotransmitter and hormone release, and electrolyte transport in epithelia

  • The template with the highest sequence identity (78%) to human KCNQ1 is the recently published cryo-electron microscopy (cryo-EM) structure of X. leavis KCNQ1 (PDB 5VMS) [31], which appears to represent a decoupled state with an activated VSD and a closed pore

  • Because no experimental resting state VSD structure of a voltagegated potassium channel was available, templates of the VSD in the RC model were obtained from VSD structures of related non-mammalian proteins and another structural model: the resting VSD of the C. intestinalis voltage-sensing phosphatase (Ci-VSP) (PDB 4G7Y) [32], VSD2 in the A. thaliana two pore calcium channel protein 1 (TPC1) (PDB 5DQQ) [33], and the resting VSD conformation C3 in a model of the Shaker channel [36]

Read more

Summary

Introduction

Voltage-gated ion channels are ubiquitously expressed in human tissues and contribute to diverse physiological phenomena such as generation and modulation of the membrane potential in excitable cells, myocyte contraction, modulation of neurotransmitter and hormone release, and electrolyte transport in epithelia. KCNQ1 (KV7.1) is a voltage-gated potassium (KV) channel expressed in the heart and in epithelial cells of the inner ear, stomach, kidney and colon [1]. The central pore domain (PD, S5-P-S6) is surrounded by four voltage-sensing domains (VSDs, S1-S4) that respond to membrane depolarization by undergoing a conformational change that triggers structural rearrangements in the PD (called electromechanical coupling), which opens the channel gate making the channel conductive [2, 3]. We note that a hallmark of the KCNQ1 channel is its co-assembly with the KCNE1 auxiliary subunit in the heart to generate the channel complex that is responsible for the slow delayed rectifier current (IKS) necessary for myocardial repolarization [12, 13]

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.