Abstract

By overcoming the diffraction limit in light microscopy, super-resolution techniques, such as stimulated emission depletion (STED) microscopy, are experiencing an increasing impact on life sciences. High costs and technically demanding setups, however, may still hinder a wider distribution of this innovation in biomedical research laboratories. As far-field microscopy is the most widely employed microscopy modality in the life sciences, upgrading already existing systems seems to be an attractive option for achieving diffraction-unlimited fluorescence microscopy in a cost-effective manner. Here, we demonstrate the successful upgrade of a commercial time-resolved confocal fluorescence microscope to an easy-to-align STED microscope in the single-beam path layout, previously proposed as “easy-STED”, achieving lateral resolution < λ/10 corresponding to a five-fold improvement over a confocal modality. For this purpose, both the excitation and depletion laser beams pass through a commercially available segmented phase plate that creates the STED-doughnut light distribution in the focal plane, while leaving the excitation beam unaltered when implemented into the joint beam path. Diffraction-unlimited imaging of 20 nm-sized fluorescent beads as reference were achieved with the wavelength combination of 635 nm excitation and 766 nm depletion. To evaluate the STED performance in biological systems, we compared the popular phalloidin-coupled fluorescent dyes Atto647N and Abberior STAR635 by labeling F-actin filaments in vitro as well as through immunofluorescence recordings of microtubules in a complex epithelial tissue. Here, we applied a recently proposed deconvolution approach and showed that images obtained from time-gated pulsed STED microscopy may benefit concerning the signal-to-background ratio, from the joint deconvolution of sub-images with different spatial information which were extracted from offline time gating.

Highlights

  • The importance of light microscopy in general and fluorescence microscopy in particular as a biophysical imaging tool for understanding life on the cellular and sub-cellular levels is unarguable [1,2]

  • To estimate the achievable spatial resolution of a microscopic system, beads are often used whose diameter is smaller than the anticipated resolution

  • By lowering the frequency of excitation and stimulated emission depletion (STED) de-excitation from the maximal possible value of 40 MHz to 2.5 MHz the pulse energy delivered by our STED laser rose by a factor of approx

Read more

Summary

Introduction

The importance of light microscopy in general and fluorescence microscopy in particular as a biophysical imaging tool for understanding life on the cellular and sub-cellular levels is unarguable [1,2]. The high degree of specificity achievable by fluorescent proteins or by tagging proteins with organic fluorophores along with the mostly noninvasive character of this method are PLOS ONE | DOI:10.1371/journal.pone.0130717. Single-Beam Path STED Microscope decision to publish, or preparation of the manuscript. The specific roles of these authors are articulated in the ‘author contributions’ section

Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.