Abstract

UPGMA (Unweighted Pair Group Method with Arithmetic Mean) is a widely used clustering method. Here we show that UPGMA is a greedy heuristic for the normalized equidistant minimum evolution (NEME) problem, that is, finding a rooted tree that minimizes the minimum evolution score relative to the dissimilarity matrix among all rooted trees with the same leaf-set in which all leaves have the same distance to the root. We prove that the NEME problem is NP-hard. In addition, we present some heuristic and approximation algorithms for solving the NEME problem, including a polynomial time algorithm that yields a binary, rooted tree whose NEME score is within O(log2⁡n) of the optimum.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.