Abstract
Saccharomyces cerevisiae Upf1p is a 971-amino-acid protein that is required for the nonsense-mediated mRNA decay (NMD) pathway, a pathway that degrades mRNAs with premature translational termination codons. We have identified a two-hybrid interaction between Upf1p and the nuclear pore (Nup) proteins, Nup100p and Nup116p. Both nucleoporins predominantly localize to the cytoplasmic side of the nuclear pore and participate in mRNA transport. The two-hybrid interaction between Upf1p and the nuclear pore proteins, Nup100p and Nup116p, is dependent on the presence of the C-terminal 158 amino acids of Upf1p. Nup100p and Nup116p can be co-immunoprecipitated from whole-cell extracts with Upf1p, confirming in vitro the interaction identified by the two-hybrid analysis. Finally, we see a genetic interaction between UPF1 and NUP100. The growth of upf1Δ, can1-100 cells is inhibited by canavanine. The deletion of NUP100 allows upf1Δ, can1-100 cells to grow in the presence of canavanine. Physiologically, the interaction between Upf1p and the nuclear pore proteins, Nup100p and Nup116p, is significant because it suggests a mechanism to ensure that Upf1p associates with newly synthesized mRNA as it is transported from the nucleus to the cytoplasm prior to the pioneer round of translation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.