Abstract

BackgroundSeveral small open reading frames located within the 5′ untranslated regions of mRNAs have recently been shown to be translated. In humans, about 50% of mRNAs contain at least one upstream open reading frame representing a large resource of coding potential. We propose that some upstream open reading frames encode peptides that are functional and contribute to proteome complexity in humans and other organisms. We use the term uPEPs to describe peptides encoded by upstream open reading frames.ResultsWe have developed an online tool, termed uPEPperoni, to facilitate the identification of putative bioactive peptides. uPEPperoni detects conserved upstream open reading frames in eukaryotic transcripts by comparing query nucleotide sequences against mRNA sequences within the NCBI RefSeq database. The algorithm first locates the main coding sequence and then searches for open reading frames 5′ to the main start codon which are subsequently analysed for conservation. uPEPperoni also determines the substitution frequency for both the upstream open reading frames and the main coding sequence. In addition, the uPEPperoni tool produces sequence identity heatmaps which allow rapid visual inspection of conserved regions in paired mRNAs.ConclusionsuPEPperoni features user-nominated settings including, nucleotide match/mismatch, gap penalties, Ka/Ks ratios and output mode. The heatmap output shows levels of identity between any two sequences and provides easy recognition of conserved regions. Furthermore, this web tool allows comparison of evolutionary pressures acting on the upstream open reading frame against other regions of the mRNA. Additionally, the heatmap web applet can also be used to visualise the degree of conservation in any pair of sequences. uPEPperoni is freely available on an interactive web server at http://upep-scmb.biosci.uq.edu.au.

Highlights

  • Several small open reading frames located within the 5′ untranslated regions of mRNAs have recently been shown to be translated

  • To identify conserved uORF-encoded peptide (uPEP), a query sequence is aligned against reference upstream open reading frame (uORF) using the tblastx subprogram of NCBI’s blastall standalone executable

  • The tblastx subprogram is used in preference to nucleotide based blast programs because of its better sensitivity and to preference selection of uPEPs conserved at the amino acid level, rather than uORFs conserved at the nucleotide level

Read more

Summary

Results

We have developed an online tool, termed uPEPperoni, to facilitate the identification of putative bioactive peptides. uPEPperoni detects conserved upstream open reading frames in eukaryotic transcripts by comparing query nucleotide sequences against mRNA sequences within the NCBI RefSeq database. UPEPperoni detects conserved upstream open reading frames in eukaryotic transcripts by comparing query nucleotide sequences against mRNA sequences within the NCBI RefSeq database. UPEPperoni determines the substitution frequency for both the upstream open reading frames and the main coding sequence. The uPEPperoni tool produces sequence identity heatmaps which allow rapid visual inspection of conserved regions in paired mRNAs. Conclusions: uPEPperoni features user-nominated settings including, nucleotide match/mismatch, gap penalties, Ka/Ks ratios and output mode. The heatmap output shows levels of identity between any two sequences and provides easy recognition of conserved regions. This web tool allows comparison of evolutionary pressures acting on the upstream open reading frame against other regions of the mRNA.

Background
Results and discussion
Conclusions
16. Kozak M
24. Yang Z
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.