Abstract

Starting from a steady state configuration of a nuclear power reactor some situations arise in which the reactor configuration is perturbed. The Lambda modes are eigenfunctions associated with a given configuration of the reactor, which have successfully been used to describe unstable events in BWRs. To compute several eigenvalues and its corresponding eigenfunctions for a nuclear reactor is quite expensive from the computational point of view. Krylov subspace methods are efficient methods to compute the dominant Lambda modes associated with a given configuration of the reactor, but if the Lambda modes have to be computed for different perturbed configurations of the reactor more efficient methods can be used. In this paper, different methods for the updating Lambda modes problem will be proposed and compared by computing the dominant Lambda modes of different configurations associated with a Boron injection transient in a typical BWR reactor.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.