Abstract
Image restoration is the recovery of images that have been degraded by blur and noise. Nonlinear degenerate diffusion partial differential equation models for image restoration require often the solution of a challenging discrete problem. We consider solving the related discrete models in the time-scale steps by Krylov iterative solvers accelerated by updating a preconditioner based on incomplete factorizations which presents a global computational cost slightly more than linear in the number of the image pixels. We demonstrate the efficiency of the strategy by denoising and deblurring some images with a generalized Alvarez–Lions–Morel-like partial differential equation model discretized by a semi implicit complementary volume scheme.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.