Abstract
Among the multi-trait models selected to study several traits and environments jointly, the Bayesian framework has been a preferred tool when constructing a more complex and biologically realistic model. In most cases, non-informative prior distributions are adopted in studies using the Bayesian approach. However, the Bayesian approach presents more accurate estimates when informative prior distributions are used. The present study was developed to evaluate the efficiency and applicability of multi-trait multi-environment (MTME) models within a Bayesian framework utilizing a strategy for eliciting informative prior distribution using previous data on rice. The study involved data pertaining to rice (Oryza sativa L.) genotypes in three environments and five crop seasons (2010/2011 until 2014/2015) for the following traits: grain yield (GY), flowering in days (FLOR) and plant height (PH). Variance components, genetic and non-genetic parameters were estimated using the Bayesian method. In general, the informative prior distribution in Bayesian MTME models provided higher estimates of individual narrow-sense heritability and variance components, as well as minor lengths for the highest probability density interval (HPD), compared to their respective non-informative prior distribution analyses. More informative prior distributions make it possible to detect genetic correlations between traits, which cannot be achieved with non-informative prior distributions. Therefore, this mechanism presented to update knowledge for an elicitation of an informative prior distribution can be efficiently applied in rice breeding programs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.