Abstract

When solving a sequence of related linear systems by iterative methods, it is common to reuse the preconditioner for several systems, and then to recompute the preconditioner when the matrix has changed significantly. Rather than recomputing the preconditioner from scratch, it is potentially more efficient to update the previous preconditioner. Unfortunately, it is not always known how to update a preconditioner, for example, when the preconditioner is an incomplete factorization. A recently proposed iterative algorithm for computing incomplete factorizations, however, is able to exploit an initial guess, unlike existing algorithms for incomplete factorizations. By treating a previous factorization as an initial guess to this algorithm, an incomplete factorization may thus be updated. We use a sequence of problems from model order reduction. Experimental results using an optimized GPU implementation show that updating a previous factorization can be inexpensive and effective, making solving sequences of linear systems a potential niche problem for the iterative incomplete factorization algorithm.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.