Abstract

(i) during interferogram conditioning, where the raw interferogram is preconditioned in preparation for phase unwrapping; and (ii) during production of the final InSAR-updated DEM. Analysis of the algorithm shows that the estimated baseline parameters result in an output InSAR DEM with approximately the same mean and trends in range and azimuth as the input DEM. This is achieved because the new algorithm allows the baseline parameters to absorb errors due to offsets and trends in the auxiliary parameters, such as range distance and satellite altitudes, and in the unwrapped phase. We have demonstrated the ability of the algorithm to improve DEMs of various qualities using RADARSAT-1 InSAR data. The generated DEMs have standard deviations of 12–20 m with respect to a control DEM with an accuracy of 3 m standard deviation. This represents a two to four times improvement in height accuracy compared with the input DEMs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.