Abstract
In non-destructive evaluation the use of finite element models to evaluate structural behavior and experimental setup optimization can complement with the inspector׳s experience. A new adaptive response surface methodology, especially adapted for thermal problems, is used to update the experimental setup parameters in a finite element model to the state of the test sample measured by pulsed thermography. Poly Vinyl Chloride (PVC) test samples are used to examine the results for thermal insulator models. A comparison of the achieved results is made by changing the target values from experimental pulsed thermography data to a fixed validation model. Several optimizers are compared and discussed with the focus on speed and accuracy. A time efficiency increase of over 20 and an accuracy of over 99.5% are achieved by the choice of the correct parameter sets and optimizer. Proper parameter set selection criteria are defined and the influence of the choice of the optimization algorithm and parameter set on the accuracy and convergence time are investigated.
Accepted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.