Abstract

The N-nitrosodimethylamine (NDMA) formation pathway in chloraminated drinking water remains unresolved. In pH 7-10 waters amended with 10 μM total dimethylamine and 800 μeq Cl2·L-1 dichloramine (NHCl2), NDMA, nitrous oxide (N2O), dissolved oxygen (DO), NHCl2, and monochloramine (NH2Cl) were kinetically quantified. NHCl2, N2O, and DO profiles indicated that reactive nitrogen species (RNS) formed during NHCl2 decomposition, including nitroxyl/nitroxyl anion (HNO/NO-) and peroxynitrous acid/peroxynitrite anion (ONOOH/ONOO-). Experiments with uric acid (a ONOOH/ONOO- scavenger) implicated ONOOH/ONOO- as a central node for NDMA formation, which were further supported by the concomitant N-nitrodimethylamine formation. A kinetic model accurately simulated NHCl2, NH2Cl, NDMA, and DO concentrations and included (1) the unified model of chloramine chemistry revised with HNO as a direct product of NHCl2 hydrolysis; (2) HNO/NO- then reacting with (i) HNO to form N2O, (ii) DO to form ONOOH/ONOO-, or (iii) NHCl2 or NH2Cl to form nitrogen gas; and (3) NDMA formation via ONOOH/ONOO- or their decomposition products reacting with (i) dimethylamine (DMA) and/or (ii) chlorinated unsymmetrical dimethylhydrazine (UDMH-Cl), the product of NHCl2 and DMA. Overall, updated NHCl2 decomposition pathways are proposed, yielding (1) RNS via and (2) NDMA via .

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.