Abstract

In this paper, the updated Lagrangian Taylor-SPH meshfree method is applied to the numerical analysis of large deformation and failure problems under dynamic conditions. The Taylor-SPH method is a meshfree collocation method developed by the authors over the past years. The governing equations, a set of first-order hyperbolic partial differential equations, are written in mixed form in terms of stress and velocity. This set of equations is first discretized in time by means of a Taylor series expansion in two steps and afterwards in space using a corrected form of the SPH method. Two sets of particles are used for the computation resulting on the elimination of the classical tensile instability. In the paper presented herein the authors propose an updated Lagrangian Taylor-SPH approach to address the large deformations of the solid, and therefore the continuous re-positioning of the particles. In order to illustrate the performance and efficiency of the proposed method, some numerical examples based on elastic and viscoplastic materials involving large deformations under dynamic conditions are solved using the proposed algorithm. Results clearly show that the updated Lagrangian Taylor-SPH method is an accurate tool to model large deformation and failure problems under dynamic loadings.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.