Abstract
The calculated rates of H2SO4‐H2O binary homogeneous nucleation (BHN), which is the only nucleation mechanism currently widely used in global aerosol models, are well known to have large uncertainties. Recently, we have reduced the uncertainties in the BHN rates on the basis of a kinetic quasi‐unary nucleation (KQUN) model, by taking into account the measured bonding energetics of H2SO4 monomers with hydrated sulfuric acid dimers and trimers. The uncertainties were further reduced by using two independent measurements to constrain the equilibrium constants for monomer hydration. In this paper, we present updated BHN rate look‐up tables derived from the improved KQUN model which can be used by anyone to obtain the BHN rates under given conditions. The look‐up tables cover a wide range of key parameters that can be found in the atmosphere and laboratory studies, and their usage significantly reduces the computational costs of the BHN rate calculations, which is critical for multidimensional modeling. The look‐up tables can also be used by those involved in experiments and field measurements to quickly assess the likeliness of BHN. For quick application, one can obtain the BHN rates and properties of critical clusters by browsing through the tables. A comparison of results based on the look‐up tables with those from widely used classical BHN model indicates that, in addition to several orders of magnitude difference in nucleation rates, there also exists substantial difference in the predicted numbers of sulfuric acid molecules in the critical clusters and their dependence on key parameters.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.