Abstract

Context. Thanks to more than 20 yr of monitoring, the radial velocity (RV) method has detected long-period companions (P > 10 yr) around several dozens of stars. Yet, the true nature of these companions remains unclear because of the uncertainty as to the inclination of the companion orbital plane. Aims. We wish to constrain the orbital inclination and the true mass of long-period single companions. Methods. We used a Markov chain Monte Carlo (MCMC) fitting algorithm to combine RV measurements with absolute astrometry and, when available, relative astrometry data. Results. We have lifted the sin(i) indetermination for seven long-period companions. We find true masses in the planetary mass range for the candidate planets detected in the following systems: Epsilon Indi A, HD 13931, HD 115954, and HD 222155. The mass of HD 219077 b is close to the deuterium-burning limit and its nature is uncertain because of the imprecise mass of the host star. Using additional RV measurements, we refine the orbital parameters of HIP 70849 b and find a mass in the planetary range. By combining RV data with absolute and relative astrometry, we significantly improve the characterization of HD 211847 B and properly determine its mass, which appears to be in the low-mass star range. This work illustrates how Gaia and HIPPARCOS allow for the orbital properties and masses of long-period RV companions to be further constrained.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.