Abstract

In this work, we revise and update model-independent constraints from Big Bang Nucleosynthesis on MeV-scale particles ϕ which decay into photons and/or electron-positron pairs. We use the latest determinations of primordial abundances and extend the analysis in [1] by including all spin-statistical factors as well as inverse decays, significantly strengthening the resulting bounds in particular for small masses. For a very suppressed initial abundance of ϕ, these effects become ever more important and we find that even a pure `freeze-in' abundance can be significantly constrained. In parallel to this article, we release the public code ACROPOLIS which numerically solves the reaction network necessary to evaluate the effect of photodisintegration on the final light element abundances. As an interesting application, we re-evaluate a possible solution of the lithium problem due to the photodisintegration of beryllium and find that e.g. an ALP produced via freeze-in can lead to a viable solution.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.