Abstract
Primary aldosteronism (PA) is the leading cause of secondary hypertension, accounting for over 10% of patients with high blood pressure. It is characterized by autonomous production of aldosterone from the adrenal glands leading to low-renin levels. The two most common forms arise from bilateral adrenocortical hyperplasia (BAH) and aldosterone-producing adenoma (APA). We discuss recent discoveries in the genetics of PA. Most APAs harbor variants in the KCNJ5, CACNA1D, ATP1A1, ATP2B3, and CTNNB1 genes. With the exception of β-catenin (CTNNB1), all other causative genes encode ion channels; pathogenic variants found in PA lead to altered ion transportation, cell membrane depolarization, and consequently aldosterone overproduction. Some of these genes are found mutated in the germline state (CYP11B2, CLCN2, KCNJ5, CACNA1H, and CACNA1D), leading then to familial hyperaldosteronism, and often BAH rather than single APAs. Several genetic defects in the germline or somatic state have been identified in PA. Understanding how these molecular abnormalities lead to excess aldosterone contributes significantly to the elucidation of the pathophysiology of low-renin hypertension. It may also lead to new and more effective therapies for this disease acting at the molecular level.
Accepted Version
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.