Abstract

Mass spectrometry (MS) has been successfully applied for the identification and quantification of uremic toxins and uremia-associated modified proteins. This review focuses on the recent progress in the MS analysis of uremic toxins. Uremic toxins include low-molecular weight solutes, protein-bound low-molecular weight solutes, and middle molecules (peptides and proteins). Based on MS analysis of these uremic toxins, the pathogenesis of the uremic symptoms will be elucidated to prevent and manage the symptoms. Notably, protein-bound uremic toxins such as indoxyl sulfate, p-cresyl sulfate, and 3-carboxy-4-methyl-5-propyl-2-furanpropionic acid have emerged as important targets of therapeutic removal. Hemodialysis even with a high-flux membrane cannot efficiently remove the protein-bound uremic toxins because of their high albumin-binding property. The accumulation of these protein-bound uremic toxins in the blood of dialysis patients might play an important role in the development of uremic complications such as cardiovascular disease. Indoxyl sulfate is the most promising protein-bound uremic toxin as a biomarker of progress in chronic kidney disease. Novel dialysis techniques or membranes should be developed to efficiently remove these protein-bound uremic toxins for the prevention and management of uremic complications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call