Abstract

We investigate extensions of Alur and Dill's timed automata, based on the possibility to update the clocks in a more elaborate way than simply reset them to zero. We call these automata updatable timed automata . They form an undecidable class of models, in the sense that emptiness checking is not decidable. However, using an extension of the region graph construction, we exhibit interesting decidable subclasses. In a surprising way, decidability depends on the nature of the clock constraints which are used, diagonal-free or not, whereas these constraints play identical roles in timed automata. We thus describe in a quite precise way the thin frontier between decidable and undecidable classes of updatable timed automata. We also study the expressive power of updatable timed automata. It turns out that any updatable automaton belonging to some decidable subclass can be effectively transformed into an equivalent timed automaton without updates but with silent transitions. The transformation suffers from an enormous combinatorics blow-up which seems unavoidable. Therefore, updatable timed automata appear to be a concise model for representing and analyzing large classes of timed systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.