Abstract

Although many updatable learned indexes have been proposed in recent years, whether they can outperform traditional approaches on disk remains unknown. In this study, we revisit and implement four state-of-the-art updatable learned indexes on disk, and compare them against the B+-tree under a wide range of settings. Through our evaluation, we make some key observations: 1) Overall, the B+-tree performs well across a range of workload types and datasets. 2) A learned index could outperform B+-tree or other learned indexes on disk for a specific workload. For example, PGM achieves the best performance in write-only workloads while LIPP significantly outperforms others in lookup-only workloads. We further conduct a detailed performance analysis to reveal the strengths and weaknesses of these learned indexes on disk. Moreover, we summarize the observed common shortcomings in five categories and propose four design principles to guide future design of on-disk, updatable learned indexes: (1) reducing the index's tree height, (2) better data structures to lower operation overheads, (3) improving the efficiency of scan operations, and (4) more efficient storage layout.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.