Abstract

Globally, the adverse environmental impact of waste plastics is of increasing concern. Most plastics are naturally non-degradable, thus imposes serious environmental threats, especially, to marine life. Upcycling such waste into valuable contents is an effective approach to managing waste plastics. In this study, graphene is synthesized from waste polystyrene (PS) by thermal decomposition at different temperatures (500, 600, 700, 800, 900 and 1000 °C) for two hours reaction time in a stainless steel autoclave. The synthesized materials are characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Energy-disperse X-ray analysis (EDS) and surface area by using Brunauer–Emmett–Teller (BET). The yield of the product materials was investigated and optimized against the temperature. The synthesized graphene is considered a promising material for many applications, especially in environmental applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call