Abstract
AbstractPlastic pollution and its harmful effects on the earth ecosystem, which inevitably affect quality of life, have brought attention to the frontiers of research society. Among plastics, polyethylene terephthalate (PET) is used on a massive scale in various sectors of industry, including the automobile, textile, and packaging. Utilizing an electrospinning fiber production technique, we have successfully upcycled PET waste bottle into electrochemical active carbon material that functions as a double‐layer supercapacitor substance. Our detailed electrochemical and analytical characterization revealed that the generated carbon substance is a mixture of amorphous carbon and reduced graphene oxide with relatively high surface area. The electrochemical characterization of the as‐prepared material consisting of cyclic voltammetry, galvanostatic cycling with potential limitations, and electrochemical impedance spectroscopy analyses revealed that the generated medium has combined characteristics of both double‐layer and redox reaction pseudo‐capacitance with self‐strengthening effect along cycling. We believe that the proposed process is scalable with environmental and economic advantages and this study could present opportunities for future research and development.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.