Abstract

Herein, the possibility of valorizing defatted sesame seed meal (DSSM) as a viable source for valuable plant proteins and amyloid-based nanostructure was investigated. Sesame seed protein isolate (SSPI) and the major storage protein globulin (SSG) were prepared by alkaline extraction-isoelectric point precipitation as well as fractionation in the case of SSG. The protein samples were characterized for their physicochemical attributes. SSPI and SSG were also evaluated for their ability to form amyloid structures under heating (90 °C) at low pH (2.0). Additionally, the functional attributes, antioxidant activity, and biocompatibility of the proteins and amyloid nanostructures were also examined. SSPI and SSG were both successfully prepared from DSSM. The data showed that the physicochemical attributes of both protein samples were quite similar, except for the fact that SSG was mostly composed of 11S globulin, as evinced by Tricine-SDS-PAGE analysis. TEM micrographs revealed that SSG was able to form curly-shaped fibrillar amyloid structures, whereas those derived from SSPI were mostly amorphous. Thioflavin-T assay and Tricine-SDS-PAGE analysis indicated that acidic heating promoted protein hydrolysis and self-aggregation of the hydrolyzed peptides into a β-sheet rich amyloid structure. Importantly, the amyloid preparations displayed commendable solubility, superior water and oil holding capacities, and antioxidant activity against DPPH and ABTS. The protein amyloid nanostructures were found to be non-toxic against RAW264.7 cells, HaCaT cells, and red blood cells. These findings indicate that DSSM could be upcycled into valuable protein amyloid structures with good potentialities as novel food ingredients.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.