Abstract

Converting CO2 into value-added chemicals still remains a grand challenge. Succinic acid has long been considered as one of the top building block chemicals. This study reported efficiently upcycling CO2 into succinic acid by combining between electrochemical and engineered Escherichia coli. In this process, the Cu-organic framework catalyst was synthesized for electrocatalytic CO2-to-ethanol conversion with high Faradaic efficiency (FE, 84.7 %) and relative purity (RP, 95 wt%). Subsequently, an engineered E. coli with efficiently assimilating CO2-derived ethanol to produce succinic acid was constructed by combining computational design and metabolic engineering, and the succinic acid titer reached 53.8 mM with the yield of 0.41 mol/mol, which is 82 % of the theoretical yield. This study effort to link the two processes of efficient ethanol synthesis by electrocatalytic CO2 and succinic acid production from CO2-derived ethanol, paving a way for the production of succinic acid and other value-added chemicals by converting CO2 into ethanol.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.