Abstract

Networks of fluorophores arranged at the nanoscale can perform basic computation using resonance energy transfer (RET) to transport and manipulate information in the form of excitons. As excitons travel through RET circuits, they are red‐shifted due to vibrational energy loss at each transfer event. This loss prohibits RET circuits from being cascaded to form larger, more computationally complex systems. To address this issue, a nanoassembly capable of converting three or more low energy excitons into a single high energy exciton is designed and fabricated. Deemed the RET relay, this device uses upconverting nanoparticles to achieve anti‐Stokes energy transfer from near‐infrared excited fluorophores to visibly excited fluorophores. In this work, the relay is explored by first breaking it into its halves. Each fluorophore's ability to donate energy to or from the nanoparticle is characterized by a series of photoluminescence experiments. The adsorption of these fluorophores to the particle is modeled as a Langmuir process, revealing the fractional occupancy of each dye that optimizes energy transfer. A fully functional relay is then demonstrated by exciting the near‐infrared dye and extracting the visible dye's fluorescence. Lastly, the performance of the entire construct is optimized over a small sampling of assembly reaction coordinates.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call