Abstract

We report on optical beam self-action in a waveguide made of poly(methyl methacrylate) doped with laser dye DCM upon its upconverted photobleaching produced by radiation of a low power CW He-Ne laser. Nonlinear effects of self-action produce spatially stable beam structures usually interpreted as dark spatial solitons in media with negative Kerr-like nonlinearity. We demonstrate experimentally that the proposed mechanism of self-action is more likely upconverted photobleaching, i.e. photobleaching by short wavelength radiation resulting from frequency upconversion of the primary red laser light. Upconversion is not a multi-photon process. It possibly occurs as a result of inhomogeneous line broadening and excitation of thermally populated higher vibrational energy states in the ground state of the dye molecules. Theoretical model of beam propagation is based on the Shrodinger-type nonlinear propagation equation complemented by the rate equation for photobleaching. The result of simulations are in good agreement with experimental data. Possible applications of the studied effects include photonic switching and optical interconnects.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.