Abstract
Gd2O3:Er3+@Gd2O3:Yb3+ core-shell nanofibers with cubic phase were successfully fabricated by electrospinning method. The structural, morphological properties were investigated by X-Ray diffraction, scanning electron microscopy. Under 980 nm excitation, the upconversion photoluminescence in visible light exhibits strong red emitting band with obvious splitting peaks resulted from stark splitting of energy level. The visible emissions are sensitive to temperature in the range of 303-543 K. The red emission displays quenching with elevation of temperature. The activation energy for thermal quenching is equal to 0.1408 eV. The temperature dependent multi-peaks of red emission were systematically investigated. Based on valley and peak ratio of I680.31nm/ I683.03nm in upconversion emission spectra, temperature sensing with constant absolute sensitivity was achieved. These results suggest Gd2O3:Er3+@Gd2O3:Yb3+ nanofibers are promising candidates for luminescence thermometry, which may provide their application values in both scientific research and industry.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.