Abstract
NIR-II fluorophores have shown great promise for biomedical applications with superior in vivo optical properties. To date, few small-molecule NIR-II fluorophores have been discovered with donor-acceptor-donor (D-A-D) or symmetrical structures, and upconversion-mitochondria-targeted NIR-II dyes have not been reported. Herein, we report development of D-A type thiopyrylium-based NIR-II fluorophores with frequency upconversion luminescence (FUCL) at ~580 nm upon excitation at ~850 nm. H4-PEG-PT can not only quickly and effectively image mitochondria in live or fixed osteosarcoma cells with subcellular resolution at 1 nM, but also efficiently convert optical energy into heat, achieving mitochondria-targeted photothermal cancer therapy without ROS effects. H4-PEG-PT has been further evaluated in vivo and exhibited strong tumor uptake, specific NIR-II signals with high spatial and temporal resolution, and remarkable NIR-II image-guided photothermal therapy. This report presents the first D-A type thiopyrylium NIR-II theranostics for synchronous upconversion-mitochondria-targeted cell imaging, in vivo NIR-II osteosarcoma imaging and excellent photothermal efficiency.
Highlights
NIR-II fluorophores have shown great promise for biomedical applications with superior in vivo optical properties
The synthesized NIR-II fluorophores 3k-PEG, H4PEG, and H4-PEG-PT were highly resistant to photobleaching and well retained within the mitochondria even after osteosarcoma cell fixation and permeabilization at 1 nM based on frequency upconversion luminescence (FUCL) strategy with a short-wavelength luminescence at 580 nm upon excitation at ~850 nm, which is among the most favorable characteristics of fluorescent dyes
After theoretical calculation and optical structure–property relationship study, D–A thiopyrylium dye H4 derived by the conjugation with the electron-rich thiophene spacer and N,N-dimethylaniline substituent was discovered, and exhibited dramatic bathochromic shifts of π–π* transitions in the NIR-II wavelength region with emission wavelengths at ~1100 nm
Summary
NIR-II fluorophores have shown great promise for biomedical applications with superior in vivo optical properties. This report presents the first D-A type thiopyrylium NIR-II theranostics for synchronous upconversionmitochondria-targeted cell imaging, in vivo NIR-II osteosarcoma imaging and excellent photothermal efficiency. Most currently available mitochondria-targeted fluorescent dyes emit only one color in the visible or NIR-I window Their applications are somewhat limited due to poor photostability, small Stokes shifts, or high-energy laser excitation. The synthesized NIR-II fluorophores 3k-PEG, H4PEG, and H4-PEG-PT were highly resistant to photobleaching and well retained within the mitochondria even after osteosarcoma cell fixation and permeabilization at 1 nM based on FUCL strategy with a short-wavelength luminescence at 580 nm upon excitation at ~850 nm, which is among the most favorable characteristics of fluorescent dyes. To the best of our knowledge, this report presents the first D–A type thiopyrylium NIR-II theranostics for synchronous FUCL mitochondria-targeted cell imaging with subcellular resolution, deeper tissue NIR-II osteosarcoma imaging in vivo and excellent photothermal efficiency
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.