Abstract

In this work, we report a systematic investigation of upconversion losses and their effects on fluorescence quantum efficiency and fractional thermal loading in Nd3+-doped fluoride glasses. The energy transfer upconversion (γup) parameter, which describes upconversion losses, was experimentally determined using different methods: thermal lens (TL) technique and steady state luminescence (SSL) measurements. Additionally, the upconversion parameter was also obtained from energy transfer models and excited state absorption measurements. The results reveal that the microscopic treatment provided by the energy transfer models is similar to the macroscopic ones achieved from the TL and SSL measurements because similar γup parameters were obtained. Besides, the achieved results also point out the migration-assisted energy transfer according to diffusion-limited regime rather than hopping regime as responsible for the upconversion losses in Nd-doped glasses.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.