Abstract

Through a co-precipitation method Gd(OH)3:20%Yb3+, 1%Tm3+ nanorods were synthesized. After sintered at 900 degrees C for 1 h in air, the as-prepared Gd(OH)3:20%Yb3+, 1%Tm3+ nanorods were converted into Gd2O3:20%Yb3+, 1% Tm3+ nanocrystals. Crystalline phases, sizes, and morphologies of the two samples were characterized by X-ray diffraction and field emission scanning electron microscope. The up-conversion (UC) fluorescence spectra of the Gd2O3:20%Yb3+, 1%Tm3+ nanocrystals were recorded by using a fluorescence spectrophotometer with a 980 nm continuous wave laser diode as excitation source. The nanocrystals not only present characteristic blue and ultraviolet (UV) UC emissions of activated Tm3+, but also show UV UC emissions of host Gd3+. The experimental study suggests that the excitation power has great effects on UC fluorescence properties and the energy transfer from Tm3+ to Gd3+ is very efficient.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call