Abstract

The melt quenching method was used to synthesize the Ag0 nanoparticles and Er3+ ions co-doped zinc tellurite glass. The glasses were characterized by differential thermal analyzer, UV–VIS-IR absorption, photoluminescence spectroscopy and TEM imaging. Heat treatment at different annealing time intervals above the glass transition temperature was applied to reduce the Ag+ ions to Ag0 NPs. The influence of heat treatment on structural and optical properties is examined. Intense and broad up-conversion emissions of silver are recorded in the visible region. Up-conversion luminescence spectra revealed three major emission peaks at 520, 550 and 650nm originating from 2H11/2, 4S3/2 and 4F9/2 levels, respectively. An efficient enhancement in visible region is observed for samples containing silver NPs. The absorption plasmon peaks are evidenced around 560 and 594nm. The effect of localized surface plasmon resonance and the energy transfer from the surface of silver NP to trivalent erbium ions are described as the sources of enhancement.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.