Abstract

A series of Yb3+ ions sensitized NaY(WO4)2:Er3+ phosphors were synthesized through a solid-sate reaction method. The X-ray diffraction (XRD), upconversion (UC) emission and cathodoluminescence (CL) measurments were applied to characterize the as-prepared samples. Under the excitation of 980nm light, bright green UC emissions corresponding to (2H11/2,4S3/2)→4I15/2 transitions of Er3+ ions were observed and the UC emission intensities showed an upward trend with increasing the Yb3+ ion concentration, achieving its optimum value at 25mol%. Furthermore, the temperature sensing behavior based on the thermally coupled levels (2H11/2,4S3/2) of Er3+ ions was analyzed by a fluorescence intensity ratio technique. It was found that the obtained samples can be operated in a wide temperature range of 133–773K with a maximum sensitivity of approximately 0.0112K−1 at 515K. Ultimately, strong CL properties were observed in NaY(WO4)2:0.01Er3+/0.25Yb3+ phosphors and the CL emission intensity increased gradually with the increment of accelerating voltage and filament current.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.