Abstract

(1) Background: New generation of PET-CT scanners allows performing volumetric dosimetry based on 90Y-activity distribution. The aim of this study was to perform an up-to-date evaluation of the optimal 90Y-PET-CT reconstruction parameters for a Siemens Biograph mCT scanner. (2) Methods: A cylindrical uniform phantom (P1), IEC NEMA Body-phantom (P2) and IEC NEMA Torso-phantom (P3) filled with 90Y were acquired. The matrix size and number of Equivalent Iterations (E.I.) were evaluated through the Recovery Coefficient (RC) and the Coefficient of Variation (CoV). The optimal post-reconstruction Gaussian Filter (GF) was assessed through an analysis of Root Mean Square Error (RMSE) and Full Width at Half Maximum (FWHM) in DVHs. (3) Results: For P1, RC values showed constant trends varying the matrix size (slope m = 1.25 × 10−3) or E.I. (slope m = −2.16 × 10−4). For P2, CoV decreased increasing the matrix size and it grew increasing the E.I. For P3, RMSE and mean dose values showed constant trends varying the Gaussian filter (slope m = 1.51 × 10−2) while FWHM decreased increasing filter. For smaller volumes, RMSE grew increasing the filter (from 34% to 74%) and the use of larger filters resulted in a dose underestimation (from 172 to 133 Gy). (4) Conclusions: The optimal reconstruction parameters for the Siemens Biograph mCT PET/CT scanner are presented, combining old metrics with new ones involving a dosimetric approach.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.