Abstract

High-field dynamic nuclear polarization (DNP) has emerged as a powerful technique for improving the sensitivity of solid-state NMR (SSNMR), yielding significant sensitivity enhancements for a variety of samples, including polymers. Overall, depending upon the type of polymer, the molecular weight, and the DNP sample preparation method, sensitivity enhancements between 5 and 40 have been reported. These promising enhancements remain, however, far from the theoretical maximum (>1000). Crucial to the success of DNP SSNMR is the DNP signal enhancement (εDNP ), which is the ratio of the NMR signal intensities with and without DNP. It is shown here that, for polymers exhibiting high affinity toward molecular oxygen (e.g., polystyrene), removing part of the absorbed (paramagnetic) oxygen from the solid-state samples available as powders (instead of dissolved or dispersed in a solvent) increases proton nuclear relaxation times and εDNP, hereby providing up to a two-fold sensitivity increase (i.e., a four-fold reduction in experimental time).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.