Abstract

In a recent paper, (McNabb, 1978), we set up a method allowing to compute both the transient and steady-state exchange terms between the matrix and fractured regions of a naturally fractured porous medium using the continuous time random walk method (CTRW). In particular, the exchange coefficient α parametrizing the large-scale exchange term was computed on physical grounds using a time integration of the so-called time correlation function corresponding to the particle presence in the fractures. On the other hand, the large scale averaging theory (LSAT) as developed by Quintard and Whitaker (Quintard and Whitaker, 1996) gives another definition for this exchange coefficient α. It also provides a so-called ‘closure problem’ allowing to compute α from the solution of a well-defined steady state boundary value problem, to be solved over a representative volume of the high resolution fractured map. The goal of the present paper is to show analytically that both definitions coincide, yielding a unique and well defined value of the α coefficient. This provides an unification of two approaches whose respective backgrounds are very different at the first glance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.