Abstract

Peripherin is a type III intermediate filament protein normally undetectable in most brain neurons. Here, we report a similar pattern of peripherin expression in the brains of both mice treated with systemic injections of kainic acid (KA) and in peripherin transgenic mice (Per mice) over-expressing the normal peripherin gene under its own promoter. Double-immunofluorescence labeling revealed a partial co-localization of peripherin with the microtubule-associated protein MAP2, but not with neurofilament proteins. Electrophysiological studies revealed that synaptic plasticity was markedly altered in Per mice: in CA1, long-term potentiation (LTP) was decreased in Per slices (+29 +/- 2.0%, vs. +58 +/- 5.4%, in WT); while in CA3, LTP was increased in Per (+63 +/- 3.5% vs. +43 +/- 2.4.0%). In the hippocampus of Per mice, the levels of MAP2 were decreased, though synaptophysin and PSD95 remained unchanged. These intriguing findings suggest a role of peripherin in the alteration of hippocampal synaptic plasticity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call