Abstract

Brain-derived neurotrophic factor (BDNF) has been implicated in the potent modulation of synaptic plasticity at both pre-synaptic and post-synaptic sites. However, the molecular mechanism underlying BDNF-mediated pre-synaptic modulation remains incompletely understood. Here, we report that BDNF treatment for over 4 h could significantly enhance the expression of c-Jun NH2-terminal kinase-interacting protein 3 (JIP3) in cultured hippocampal neurons. This enhancement could be blocked by the Trk inhibitor K252a or by a cAMP response element-binding protein (CREB) inhibitor. In addition, chromatin immunoprecipitation (ChIP) assays revealed that CREB could bind with the JIP3 promoter region and the BDNF treatment could increase this binding. Using dual-luciferase assays we further characterized the cAMP response element (CRE) site in the JIP3 promoter. Finally, we found that BDNF-increased JIP3 expression contributes to the BDNF-induced modulation of neurotransmitter release. Together, our studies reveal that in hippocampal neurons BDNF up-regulates JIP3 expression via CREB activation, which contributes to the enhancement of neurotransmitter release; thus, we have identified a novel mechanism that BDNF modulates pre-synaptic transmission.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call