Abstract

BackgroundsUp-regulated HIF-2α (hypoxia induced factor 2) had been demonstrated to contribute to Osteoarthritis (OA) development via inducing the expression of matrix-degrading enzymes. However, the HIF-2α also could promote primary cilia loss through HIF-2α/AURKA (Aurora kinase A)/NEDD9 pathway. And the primary cilia dysfunction is another characteristic of the OA. Thus, we investigated here whether the HIF-2α also contributes the OA development through mediating the primary cilia loss. MethodsThe primary chondrocytes were isolated from the experimental OA mice induced by destabilization of the medial meniscus (DMM). Chondrocytes were cultured under normoxia (21% O2) or hypoxia (2% O2) conditions. The HIF-1α and HIF-2α expressions were assessed by western blot. The cilia formation was counted by immuno-staining the acetylated tubulin. The contribution of HIF-1α or HIF-2α to the primary cilia loss was assessed by knocking-down the HIF-1α or HIF-2α individually. The HIF-2α/AURKA/NEDD9 pathway was validated through over-expressing or knocking-down specific components of the pathway and then counting the primary cilia number. Finally, the pathway was further confirmed in the OA mice. ResultsHypoxia could induce the expression of both HIF-1α and HIF-2α, and also reduce the number of primary cilia on the chondrocytes isolated from the experimental OA mice. Knocking-down or over-expressing HIF-1α or HIF-2α individually showed that the HIF-2α could induce the primary cilia reduction rather than the HIF-1α. Manipulating the HIF-2α expression could positively affect the AURKA and NEDD9 expression. Manipulating the AURKA and NEDD9 expressions could reverse the function of HIF-2α on primary cilia. In the mice, knocking-down both AURKA and NEDD9 could alleviate the OA development significantly. ConclusionUp-regulated HIF-2α contributes to the Osteoarthritis development through mediating the primary cilia loss, which might be developed as therapeutic targets for OA treatment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.