Abstract
Peripheral milling with up-milling and down-milling techniques is very well known from a geometrical point of view. However, in processing anisotropic materials such as wood these geometrical aspects imply relevant differences when machining. In fact milling anisotropic materials leads to different cutting geometries when up-milling or down-milling and when changing the depth of cut. This results in a relative orientation of the grain depending on the process adopted. In this paper the geometrical interactions between tool and wood grain have been analysed theoretically and supported by experimental evidence. To achieve this result, Douglas fir has been processed with different depths of cut and grain orientations, the resulting chips have been collected and analysed. The experiments show how a shift of the cutting phenomenon and the chip type can be observed to support the theoretical background.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.