Abstract

Slags coming from stainless steel (SS) and ferrochromium (FeCr) production generally contain between 1 and 10% Cr, mostly present in entrapped metallic particles (Fe–Cr alloys) and in spinel structures. To recover Cr from these slags, magnetic and gravity separation techniques were tested for up-concentrating Cr in a fraction for further processing. In case of SS slag and low carbon (LC) FeCr slag a wet high intensity magnetic separation can up-concentrate Cr in the SS slag (fraction <150 µm) from 2.3 wt.% to almost 9 wt.% with a yield of 7 wt.%, and in the LC FeCr slag from 3.1 wt.% to 11 wt.% with a yield of 3 wt.%. Different behavior of Cr-containing spinel’s in the two slag types observed during magnetic separation can be explained by the presence or absence of Fe in the lattice of the Cr-containing spinel’s, which affects their magnetic susceptibility. The Cr content of the concentrates is low compared to chromium ores, indicating that additional processing steps are necessary for a recovery process. In the case of high carbon (HC) FeCr slag, a Cr up-concentration by a factor of more than three (from 9 wt.% to 28 wt.%) can be achieved on the as received slag, after a single dry low intensity magnetic separation step, due to the well-liberated Cr-rich compounds present in this slag. After gravity separation of the HC FeCr slag, a fraction with a Cr content close to high grade Cr ores (≥50% Cr2O3) can be obtained. This fraction represents 12 wt.% of the HC FeCr slag, and can probably be used directly in traditional smelting processes.

Highlights

  • In 2018, 50.7 Mt of stainless steel (SS) was produced globally, with an average annual growth of 5.8% since 1950 [1]

  • Cr content is still low for FeCr production, this can be considered as a pre-treatment step prior to hydrometallurgical Cr recovery

  • In case of HC FeCr slag, both magnetic and gravity separation resulted in an up-concentrated fraction with a Cr content comparable with commercial primary Cr ores

Read more

Summary

Introduction

In 2018, 50.7 Mt of stainless steel (SS) was produced globally, with an average annual growth of 5.8% since 1950 [1]. It is estimated that approximately 0.3 tons of slag per ton of SS is produced as a by-product [2]; about 17 Mt of SS slag is produced annually. In case of FeCr production, the amount of generated slag depends on the type of produced FeCr. During high-carbon (HC) FeCr production, 1.1–1.6 tons of slag per ton of HC FeCr is produced with a global annual production of. In the case of low-carbon (LC) FeCr, the amount of produced slag per ton of LC FeCr is 2.4–2.5 tons with a global annual production 0.9 Mt in 2018 [3], which corresponds to 2.2 Mt of LC FeCr slag. A significant part of the SS and FeCr slags produced in Europe are being valorized mainly in the construction industry (road construction, addition in cement and concrete, etc.) [4,5], the relatively high Cr content in these slags (1–10 wt.%) [3,6,7] represent a serious obstacle in their full valorization

Objectives
Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.