Abstract

UO2-based nuclear fuel containing integral fuel burnable absorbers (IFBA) is an economically and technically efficient solution for optimization of nuclear power reactors operation. The paper studies a new way to obtain compound UO2-Eu2O3 pellet fuel using an unconventional spark plasma sintering technology (SPS). Earlier unknown data on densification dynamics of (U,Eu)O2 solid solution and its formation under SPS conditions is presented for IFBA content of 2 and 8 wt% introduced via ultrasonication in the liquid phase. Structural changes in the fuel compositions depending on sintering temperature and IFBA content have been identified by the means of metallography and electron microscopy. A complex of measurements have been done to correlate materials microhardness (HV), compressive strength (σcs), and density (ρ) with synthesis conditions. Pore and defect formation in the Eu2O3-rich regions of the UO2 ceramics is proved to be governed by Kirkendall effect, which was observed for conventional sintering approaches. Presented results are new and complement fundamental understanding the scope of opportunities unconventional SPS technique provides for nuclear power industry.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.