Abstract
Apnea has been reported to produce bronchoconstriction and to cause hypoxia, hypercapnia, and modulation of vagal afferent nerves, which also change airway tone. In this study, the authors determined the mechanism of apnea-induced bronchoconstriction. Twenty-eight dogs anesthetized and paralyzed were assigned to four groups (n = 7 each): apnea after artificial ventilation with 50% and 100% O2 groups (apnea-50% O2 and apnea-100% O2 groups, respectively), an apnea plus vagotomy group (fraction of inspired oxygen [FiO2] = 1.0), and a one-lung ventilation group (FiO2 = 1.0). The trachea was intubated with a single- or double-lumen tube in the three apnea groups or the one-lung ventilation group, respectively. The bronchial cross-sectional area (BCA) was assessed by the authors' bronchoscopic method. In the apnea-100% O2 and apnea plus vagotomy groups, a respirator was turned off for 5 min to produce apnea. In the apnea-50% O2 group, apnea was produced for 3 min. In the one-lung ventilation group, the right lumen was blocked for 5 min, and 15 min later, the left lumen was blocked for 5 min. BCA, arterial oxygen tension (PaO2), and arterial carbon dioxide tension (PaCO2) were assessed every minute. The BCA in intact dogs time-dependently decreased by approximately 20% and 40% at 3 and 5 min after apnea started, respectively, whereas they did not in vagotomized dogs. In the apnea-50% O2 and apnea-100% O2 groups, bronchoconstriction could occur without hypoxemia, although hypercapnia was observed in all dogs. In the one-lung ventilation group, despite the fact that PaCO2 increased by only 2 mmHg without hypoxemia, unventilated BCA time-dependently decreased by 33.6 +/- 10.3%, whereas ventilated BCA did not. The current study suggests that the unventilated airway may constrict spontaneously. In addition, the airway constriction could be vagally mediated but not due to hypoxia and hypercapnia.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.