Abstract
Palm oil mill effluent (POME) is the largest liquid waste from crude palm oil production. This liquid waste still contains a lot of chemical components, solid deposits, and oil which is dangerous if released directly into the environment. The residual oil and grease components contained in POME can be further extracted and converted into fuel fractions. This study investigates the conversion of residual oil from POME into fuel fractions through hydrocracking. A ZrO2/Sarulla natural zeolite (SNZ) catalyst was used, characterized by a particle size of 1-1.5 µm, a surface area of 73.3 m2/g, a pore volume of 0.161 cc/g, and a pore diameter of 3.35 nm. The effect of catalyst mass was studied, with the total conversion increasing to a certain extent with increasing catalyst mass, however, an increase in coke formation decreased the product yield. The highest gasoline fraction selectivity was obtained with a catalyst mass of 0.09 wt% (~42%), while the kerosene fraction was most obtained with a catalyst mass of 0.15 wt% (~40%). The liquid product with a catalyst mass of 0.15 wt% had the highest HHV of 44.2 MJ/kg, a 12% increase from the HHV of POME oil residue (39.4 MJ/kg). The results demonstrate the potential of using residual oil from POME as a source for fuel production and the use of natural zeolite-based catalysts as hydrocracking catalysts.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.