Abstract
The development of multidimensional heterostructure (2D/3D) lead halide perovskites has emerged as an effective approach to enhancing the efficiency and long-term stability of perovskite solar cells (PSCs). However, a fundamental understanding of the working mechanisms, such as carrier extraction, and carrier transfer dynamics in the multidimensional perovskites heterostructures remains elusive. Here, we observe the ultrafast carrier extraction in highly efficient 2D/3D bilayer PSCs (power conversion efficiency of 21.12%) via femtosecond time-resolved pump–probe transient absorption spectroscopy (TAS). Notably, the formation of quasi-equilibrium states resulting in a subband absorption feature with an ultrafast lifetime of 440 fs was observed, and this feature is found only in 2D/3D perovskite heterostructure. The short-lived feature gives rise to the local electric-field-induced electroabsorption, resulting in an enhanced power conversion efficiency in 2D/3D PSCs. These findings can help comprehend the advanced working mechanism of highly efficient solar cells and other 2D/3D bilayer perovskite-based optoelectronic devices.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.