Abstract
AbstractThe gas‐phase thermal decomposition of a series of alkyl t‐butyl ethers catalyzed by hydrogen chloride is theoretically studied at the ωB97XD/6‐311++g(d)//CCSD(T)/6‐311++g(d) level. The experimental activation free energy for three known systems namely: t‐butyl methyl ether, t‐butyl ethyl ether, and t‐butyl isopropyl ether is used for validation of the proposed theoretical model as the transition state (TS). The chemical process was characterized using intrinsic reaction coordinate, reaction force, and reaction electronic flux profiles. The Cαδ+Oδ− polarization was identified as the determining factor in the rate‐limiting step. Upon functionalization on the Cα, 24 new compounds with different electron‐withdrawing and donating groups were studied. A good multiple‐linear correlation (R2 = 0.88) was found between the Ln(kX/kH) as the response variable and the Taft‐Topsom substituent parameters as attributes. This result supports the reliability and predictability of the proposed transition state model at this level of theory.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.